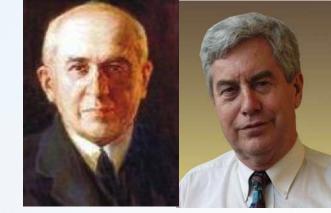


INTERNATIONAL FORUM FOR CLEAN ENERGY TECHNOLOGIES

BIPV VIA SMART GRID, HEAT PUMPS THERMAL USE OF UNDERGROUND AND ABANDONED MINES ENERGY STORAGE FOR LARGE-SCALE RES UTILIZATION

Dr. Marija S. Todorović. Lic. ME


Fellow-ASHRAE, F-REHVA, F-WAAS, member AESS

Guest Prof. Southeast University, Nanjing China, Editorial Board Member of International Journal on Global Warming, Member of the Advisory Committee of the Conservation Science and Cultural Heritage – Historical Technical Journal CEO vea-invi.ltd, Belgrade, Serbia

Novi Sad, 29-30, October 2019

Global Warming as Result of Global Disharmony or..?

- Mathematical theory of climate & Ice ages.
- A need for cooling and Air-conditioning of buildings in extreme growth.
- Jiri Grygar astrophysicist Whence Carbon Big Bang and Space Expansion

Milutin Milankovic 1879-1958, Ice Ages Theory

Whence carbon? Clima 2013 Jiri Grygar Astro-Physicist

Weather Extremes - Catastrophic Events

EU Directives On The Buildings Energy Performance

The 2002 and 2010 Directives, all Member States did get new energy efficiency requirements for existing and new buildings in their building codes.

Expectation was that the EPBD will establish a good framework for improving energy performance in buildings and that it will raise awareness on energy efficiency resulting in significant reduction of buildings energy use.

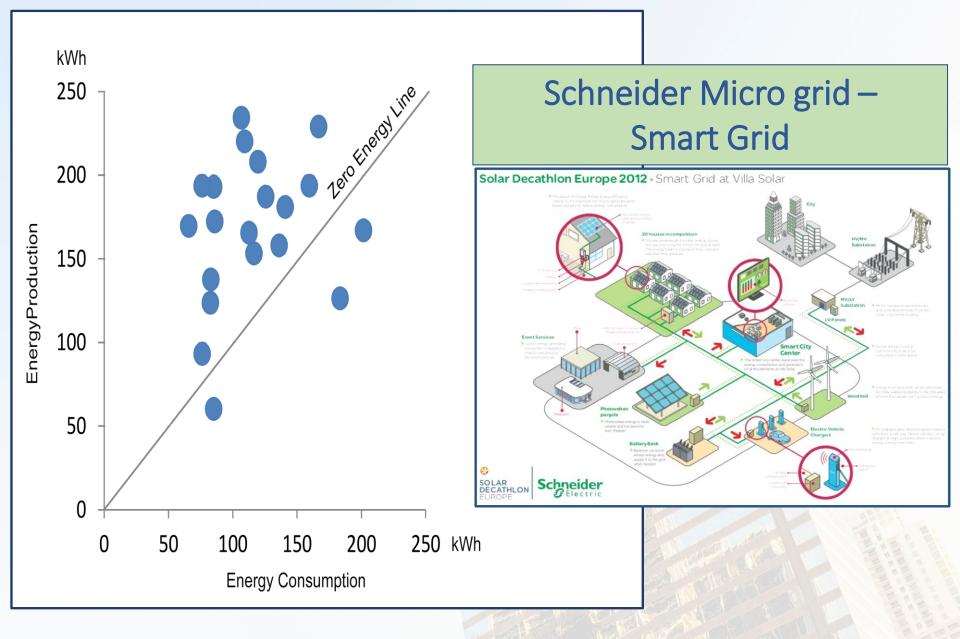
Brussels, 30.11.2016 COM(2016) 765 final 2016/0381 Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

amending Directive 2010/31/EU on the energy performance of buildings outlines that the most important DIRECTIVES result is

Its contribution to 2030 and 2050 energy and climate targets was recognized.., but among the Results disscussed nearly ZE Buildings,..and there are possible Net ZEB & EnPlusBuidings!

DIRECTIVE Official Journal of the EU 21.12.2018

- DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources (recast)
- DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC with the
- **Annez VII ENERGY FROM HEAT PUMPS (HP) AS RES** Aerothermal, geothermal or hydrothermal energy captured by heat pumps to be calculated in accordance with the following formula:
- ERES = Qusable * (1 1/SPF)
- fulfilling the criteria: Only heat pumps for which SPF > 1,15 * $1/\eta$ shall be taken into account,


SPF Seasonal performance factor for those heat pumps,

 $-\eta$ = the ratio between total gross production of electricity and the primary energy consumption

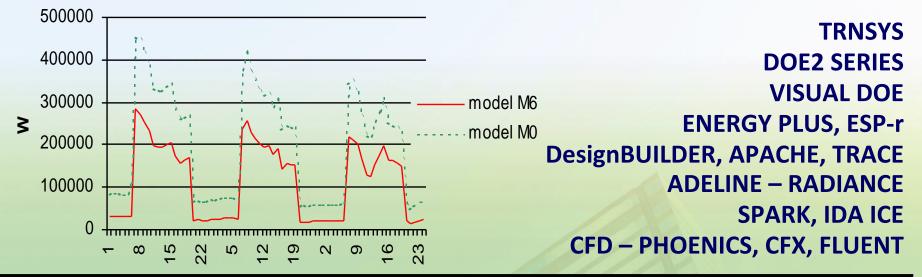
Hungary's ODOO Solar Decathlon Europe 2012 Madrid & SDE 2014 BUC Prispa From Romania in Paris

Solar Decathlon 2014 Energy Balance

To Reach NZEB Status of New or Refurbished Building

RES integrated energy system's efficient and economical introduction must be preceded by the:

Energy efficiency optimization to the level of minimum energy demands - achieved by the aggregate application of all known available measures and in scientific search for new:


- knowledge,
- technologies and
- energy efficient systems and equipment.

□ Role of science and new IT knowledge and technologies:

- Particularly in construction sector can be crucial.
- Loads and demands prediction and control
- Distributed energy generation & storage with the utilities energy production and distribution harmonization - Smart grid control – realization

Building's Energy Loads Minimization via BPS

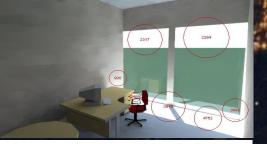
BPS - Building Performance Simula/on

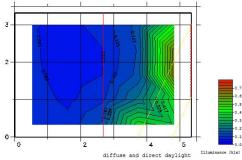
TMY – Typical Meteorological

Year 8760 Hours

for

New Building 🚺


and RES Integrated Building


Retrofit - Refurbishment

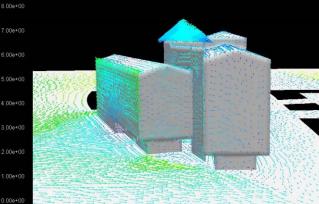
USCE Tower Reconstruction and Refurbishment

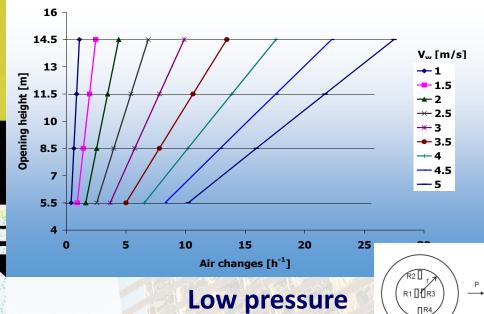
Energy demand reduction For Heating 60% & For Cooling 75%

Success Stories in BPS and Energy Efficiency Optimization

*ibpsa*NEWS

October 2005




journal of the International Building Performance Simulation Au

Residential Building Mixed Ventilation Optimal Control PV Powered

difference sensor

R3

∏R4

BIPV vs PV: a non standard component

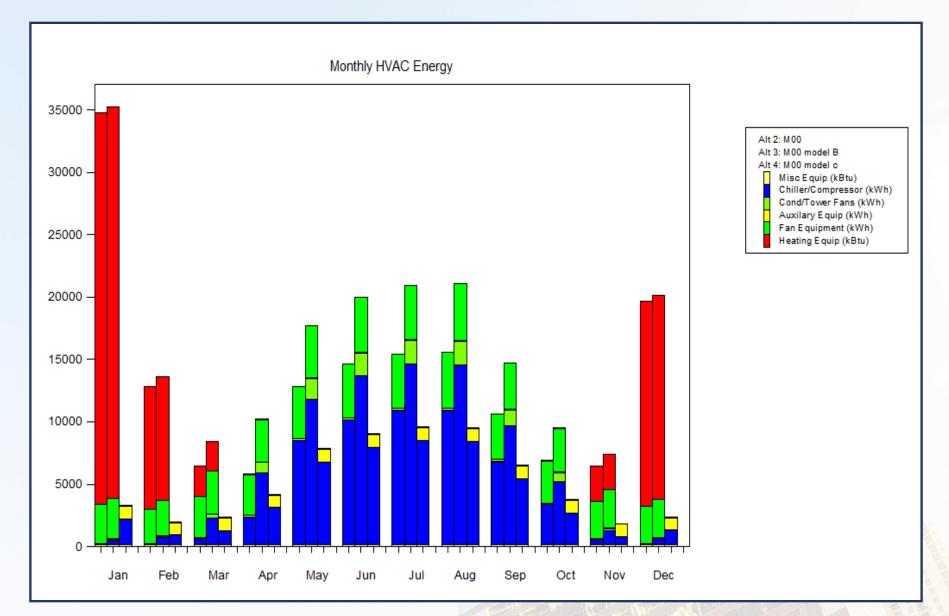
Swiss BIPV focus

- Planning regulations against urban sprawl
- PV power plants prohibited
- Exclusive integration into built environment
- **BAPV: 75%, BIPV: 25%**
- No PV power plants in Switzerland
- PV integrated only in buildings
- Architectural Design as innovation
- Demonstration of PV into various building envelope elements
- ZEB performance validation through measurements
- BIM for modeling and planning

Peri-urbanized development (RURBAN)

Swiss Harmonized Rural and Urban Development

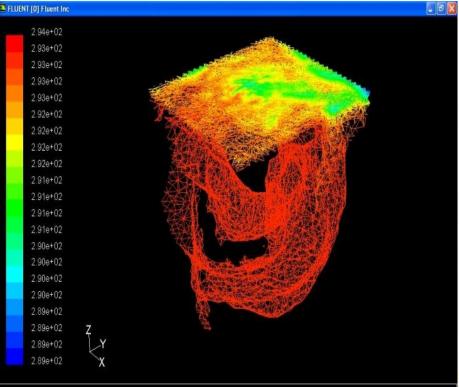
- Peri-urbanization
- **RURBAN** development relates to those processes of dispersive urban growth creating hybrid landscapes of fragmented urban and rural characteristics, as for example in Switzerland.


Historic Belgrade Center

ΠΟΠΡΑ

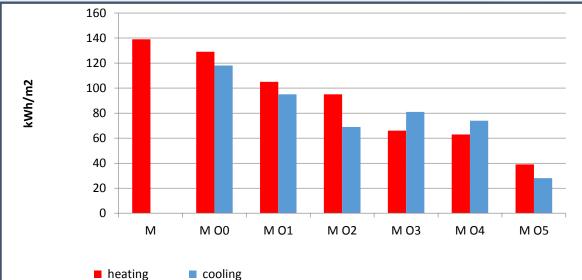
Centrotext

Envelope Models		MO0	MO0.1	MO1	MO1.1	MO2
Heat losses [W]	-18[°C]	155000	88000	59000	44000	43000
	-12[°C]	132000	77000	51000	38000	38000
$\alpha \left[W/m^2 \right]$	-18[°C]	72	41	27	20	20
$q_{sp} [W/m^2]$	-12[°C]	62	36	23	17	17
q_{sp} [W/m ³]	-18[°C]	23	13	9	7	6
	-12 [°C]	21	12	8	6	6
Qh ventilation air	-18[°C]	143000	143000	143000	143000	143000
[kW]	-12 [°C]	135000	135000	135000	135000	135000
Total heating load [kW] for - 18[°C]		298000	231000	202000	187000	186000
Total heating load [kW] for - 12[°C]		267000	212000	186000	173000	173000
Heat Gains [W]		143000	128000	131900	112000	101000
q _{sp} [W/m ²]*		70	63	65	55	50
$q_{sp} [W/m^3]$		21	19	20	17	15
Cooling heat for vent. air [kW]		163000	163000	163000	163000	163000
Total cooling loads [kW]		306000	291000	294900	275000	264000


Monthly Energy Demand for HVAC System

Thermal Use of Underground with Heat Pump GSHP & GWHP

CFD Water Extraction & Intrusion Flow Field Analysis

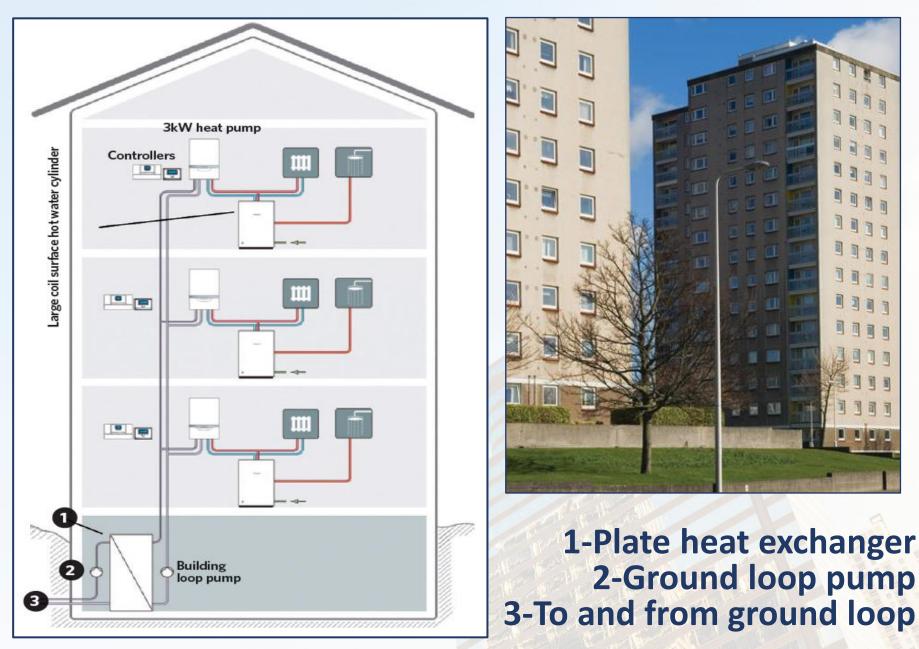


Contours of Total Temperature (k)			Mar 28, 20 FLUENT 6.1 (3d, dp, segregated, rngk		
start	5046 1 5	RUENT (3d, dp, seg	ELUENT [0] Fluent Inc	Contours	EN 🤇 🥬 12:27 FM

investment values of the selected equipment of the Primary HVACS with nominal thermal H & C loads

Equipment Specificatioons & Invetment	INVESTMENT VALUES OF THE SELECTED EQUIPMENT OF THE PRIMARYHVAC & R SYSTEMS WITH NOMINAL THERMAL LOADS OF HEATING AND COOLING (kW)/Qh (kW)					
Values	<u>1a.MO0-18⁰C</u> <u>1b.MO0-12⁰C</u> 298/306 <u>267/183</u>		<u>5b.MO2-12°C</u> 173/158,4	<u>5c.MO1-12C</u> 173/158,4		
Heating: Primary & secundary substations with heat exchangher of District Heating System	Power 300 kW 380.000 Din + <u>300.000 Din</u> 680.000 Din	Power 300 kW 380.000 Din + <u>300.000 Din</u> 680.000 Din	Power 200 kW 320.000 Din <u>250.000 Din</u> 570.000 Din			
Cooling; Aic cooled Chiller Airtrend	Capacity: 320 kW 39.024 EUR= 4.604.832 Din	Capacity: 184kW 24.754 EUR= 2.920.972 Din	Capacity: 163 kW 21.763 EUR= 2.568.034 Din			
Total	5.284.832 Din	3.600.972 Din	3.138.034 Din			
Heating 5b - EH: Electrical boiler; ACV Electrical boiler E-tech P 201 (200kW)			Capacity: 200 kW E-tech P 201 (200kW) 7.700 EUR= 908.600 Din			
Cooling: Air cooled Chiller Airtrend			Capacity 163 kW 21.763 EUR= 2.568.034 Din			
		Total	3.476.634 Din			
Heating; 60/40% HP/EIB: Air heat source – BEOHAMEX Frost HP VEGA H 110				HP- 108,8 kW	2 pieces E-tech 36 (72 kW) 640 EUR= 75.520 Din	
Cooling 60/40% HP Air/Air, BEOHAMEX Frost HP VEGA H 110 Chiler with air heat sink CGA 240 BE LA				17.000 EUR= 2.006.000 Din	CGA 240 BE LA 62,1 kW 8.742 EUR= 1.031.556 Din	
			Total	2.006.000	1.107.076	
			Total	3.113.076 Din		
Total 60/40% HP/EIB: Hydra WH100 BEOHAMEX Frost				HP- 107 kW	2 pieces E-tech 36 (72 kW) 640 EUR= 75.520 Din	
Cooling 60/40% HP Air Chiler Hydra WH100 BEOHAMEX Frost HP or Or Panklima CGA 240 BE LA				18.000 EUR= 2.036.0000 Din	Air Chil CGA 240 BE LA 62,1 kW 8742 EUR= 1.031.556 Din	
According to 5.3	.3. Hidro-geo section 1.426.000		Total	2.036.000	1.107.076	
	Zajedno sa Hidro-geo Ukupno	4.56	9.076	3.143	.076 Din	

Deep Energy Refurbishment Social Housing in Belgrade

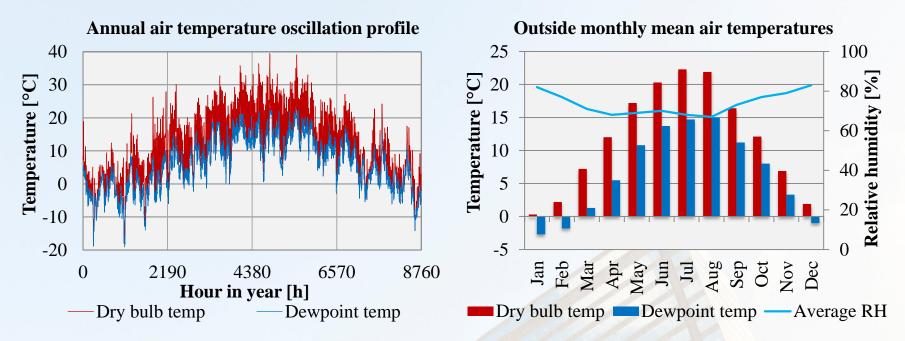

Opaque PV panels and/or Semitransparent Façade's Second Skin

Total installed PV 180.2 kW – 1/3rd of could power all existing AC split units in building

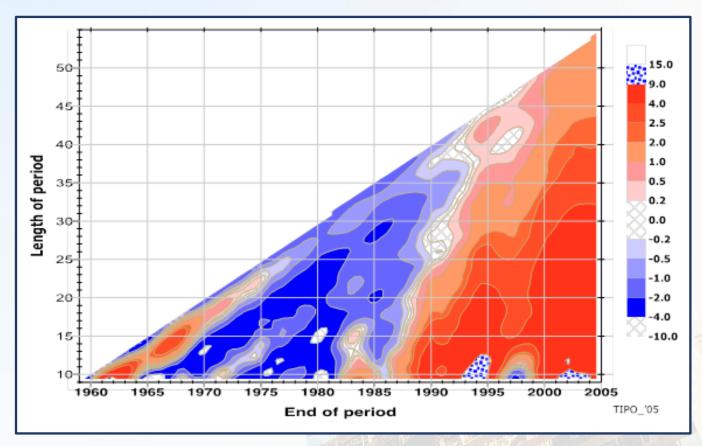
Double-skin semitransparent PV

Total useful living area	m ²	3.302.895	
Total heating energy used annually before project implem.	MWh	412.861,893	
Total heating energy used annually after project implem.	MWh	137.620,631	
Annually saved heating energy	MWh	275.241,262	
Consumption of heating energy before and after the retrofit – envelope and construction energy efficiency improvement	kWh/ m ² annually	120/40	
Installed PV panels area/power	m ² /MW	412.000/57	
Annually produced PV electricity	MWh	29.063,430	
Building construction retrofit $30 - 60 \notin m^2$	1.302.895x 301.302.896x 60	99.086.860 198.173.700	
BIPV PV panels costs estimate	412.000 x 200 €	82.400.000€	
Total Investment Estimate	€	181.986.860 to 280.573.700 €	

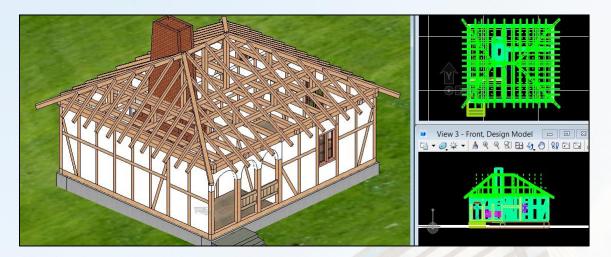
Distributed mini HPumps with Shared Ground Loop



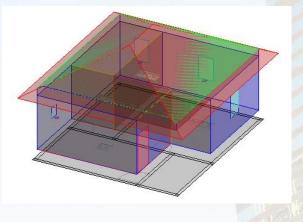
GWHP in Energy Refurbishment of an Old Traditional Village House to Approach Zero Fossil Energy and Healthy IEQ Status


Weather Data - Ćuprija

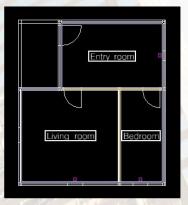
Weather data: Ćuprija, Republic of Serbia					
Heating and cooling design load weather data					
Latitude 43,93°N					
Longitude	21,38°E				
Height 125 m asl		25 m asl			
Climate Design Data:	2013 ASHRAE Handbook				
Design data	Cooling	Heating			
Design dry bulb temperature:	32,5°C	-11,6°C			
Mean coincident wind speed:	2 m/s	0.5 m/s			


Local Climate Change Relevance for Climate Resilience

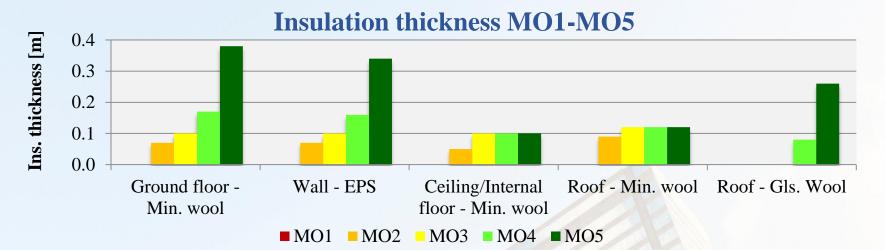
Annual air temperature in Serbia has increased intensively, more than 4.54°C /100 years. Shorter periods have higher positive values, which practically mean that the warming has been intensified annually in recent years

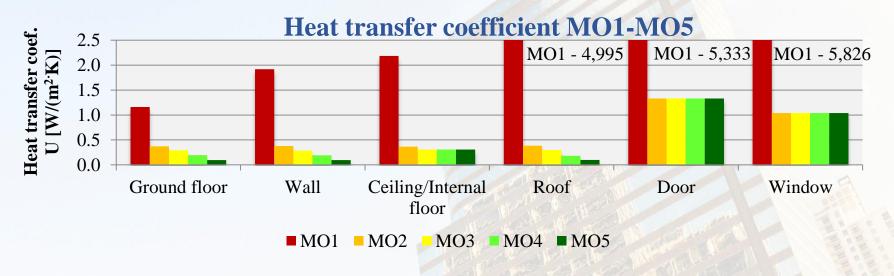


House Model

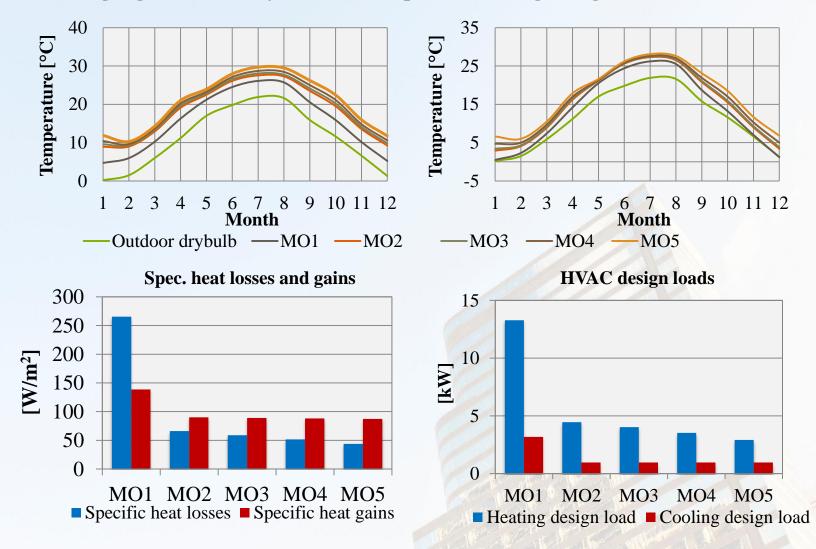

Bentley AECOsim Building Designer house model with displayed roof and wall structure

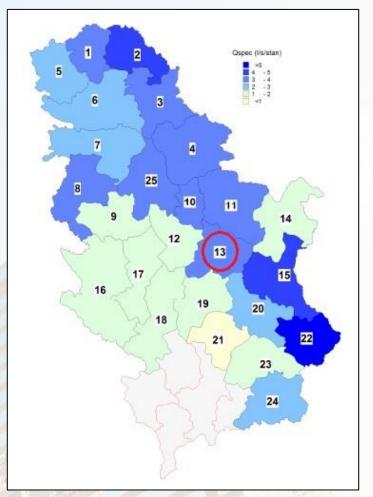
Bentley AECOsim Energy Simulator house model




3D house model

Ground floor – top view

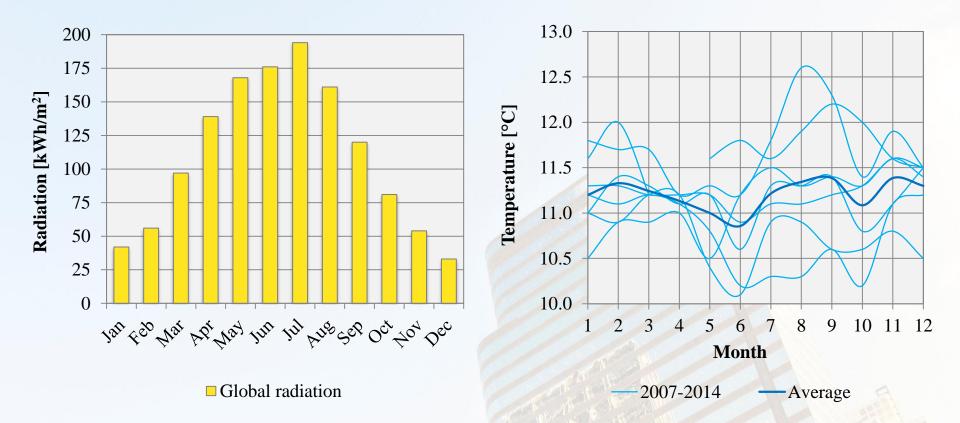

Insulation layers thickness and heat transfer coefficient values


Energy Loads

Free floatng regime - monthly mean air temperature change for ground floor (left) and attic (right)

From Energy Mix to Renewable Energy Supply

- Locally available <u>biomass forest</u> <u>wastes</u>, <u>groundwater</u>, <u>as well as</u> <u>solar radiation</u> availability at the area on which the house is located, offers reliable prospects for design and construction of sustainable energy supply system.
- Main energy demand of house heating and cooling system can be satisfied combining groundwater heat pump use and electricity production by the building integrated photovoltaic (PV) panels & biomass utilization,.



Underground water Availability in Serbia

Solar and Geo - Hydrogeological Data

Annual solar radiation profile

Groundwater temp. oscillation profile

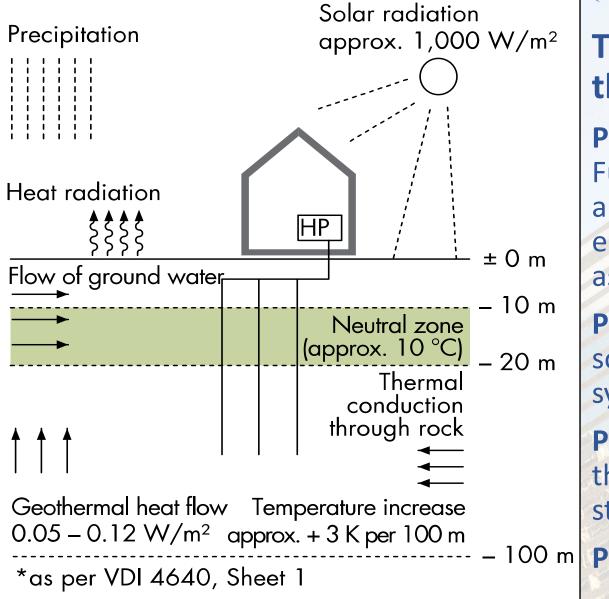
Zero Fossil Energy House as Final Result

The value of 4.800 kWh/t of pellet was used for the conversion of annual electric energy consumption for heating to required biomass amount.

Annual Biomass needs for heating

Biomass needs for heating						
Model MO1 MO2 MO3 MO4 MO5						
Biomass [kg/year]	2936	648	552	460	358	

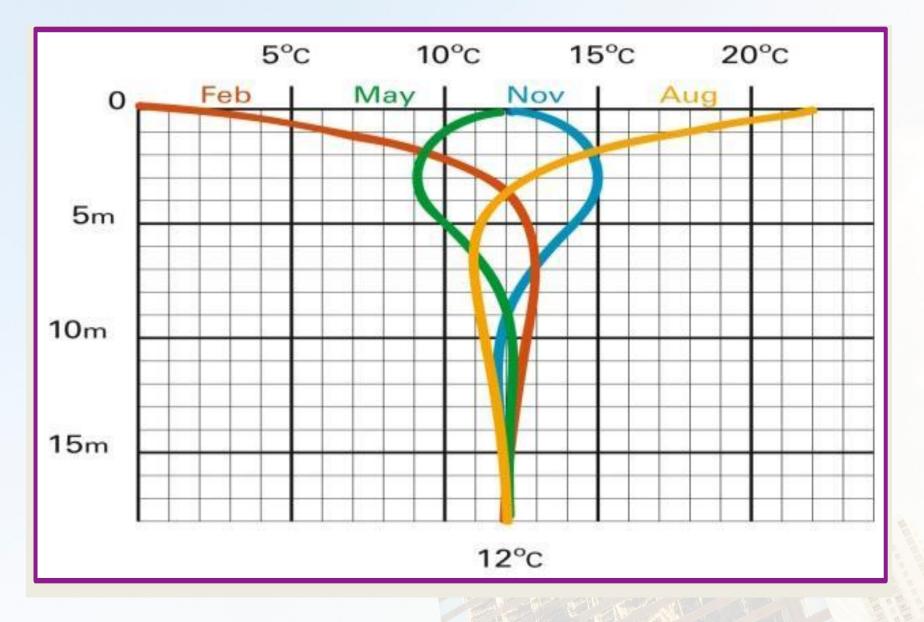
PV modules characteristics


STC 250 W P PV Panels C	haracteristics
Power output	250 W
Short circuit current	8.65 A
Open circuit voltage	37.85 V
Current at P _{max}	8.3 A
Voltage at P _{max}	30.12 V
Temp. coeff. at SC current	+0.04%/°C
Temp. coeff. at OC voltage	-0.35 mV/°C

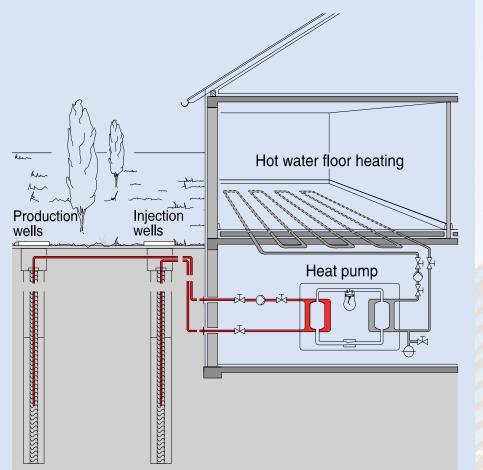
Even More EnergyPlus House as Final Result

MO2-MO5 – Total electricity demand and PV electricity production [kWh]						
Month	Demondo	PV	min	PVmax		
Month	Demands	[kWh]	[%]	[kWh]	[%]	
Jan	219.60	107	48.7	284	129.3	
Feb	195.91	146	74.5	391	199.6	
Mar	214.35	247	115.2	659	307.4	
Apr	204.22	256	125.4	683	334.4	
May	216.34	306	141.4	815	376.7	
Jun	226.07	309	136.7	824	364.5	
Jul	243.87	330	135.3	879	360.4	
Aug	245.95	314	127.7	838	340.7	
Sep	211.94	250	118.0	665	313.8	
Oct	214.19	211	98.5	563	262.9	
Nov	211.52	134	63.4	357	168.8	
Dec	221.11	86	38.9	229	103.6	
Total	2625.06	2696.00		7187	7187.00	
PV panels power production						
Number o	Number of modules		9 1- 11		24	
Installed PV	Installed PV power [kW]		2.25		6.00	
Total panels area [m ²]		13.14		35.04		

Electricity demands and PV electricity production


Fig. 3: Heat regime in upper layers of ground*

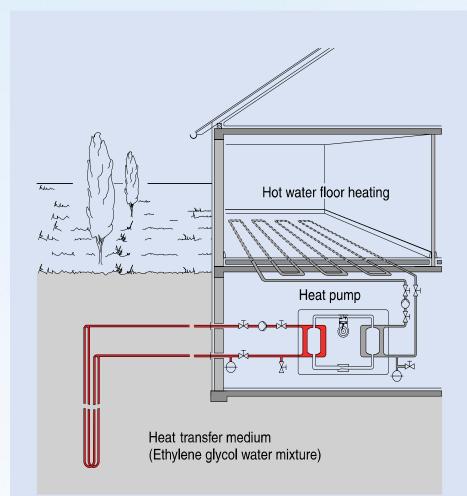
VDI 4640


Thermal Use of the Underground **Part 1** -Fundamentals, approvals, environmental aspects Part 2 - Ground source heat pump systems Part 3 - Underground thermal energy storage Part 4 - Direct uses

Average Underground Temperatures

VDI 4640 Blatt 2 / Part 2

Ground Source Heat Pump Systems



kton Hot water floor heating ken Heat pump ଜ Heat transfer medium (Ethylene glycol water mixture)

Fig. 1. Schematic of a heat pump with ground water wells

Fig. 3 Schematic of a heat pump with a horizontal ground heat exchanger

Ground source Heat Pump Systems

VDI 4640

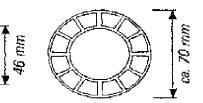

Blatt 2 / Part 2

Fig. 4. Schematic of a heat pump with borehole heat exchangers

simple U-pipe double U-pipe

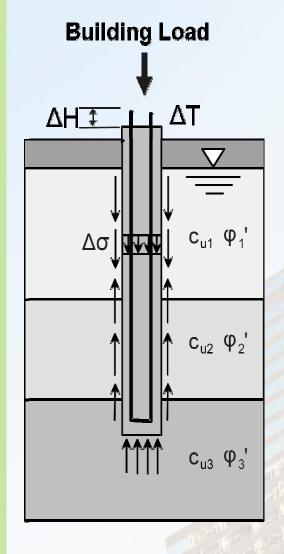
Fig. 6. Different models of borehole heat exchangers in cross-section:

simple coaxial-pipe complex coaxial-pipe

Dimensioning only typical examples as reference values

Also given Nomogram for Designing borehole heat exchangers

Additional considerations for design of energy piles


Normal pile design considerations

ULS

- Stratigraphy and soil properties
- Shear / radial stresses
- End bearing

SLS

- Pile settlement
- Differential settlement
- Concrete stress
- Negative skin friction

Additional thermal pile design considerations

ULS (Appendix D)

 Soil strength properties considering heating and cooling effects

SLS (Appendix E)

- Axial and radial pile expansion / contraction / fixity
- Thermally induced axial stresses
- Cyclic effects of thermal loading
- Temperature at soil-pile interface including daily / seasonal variations

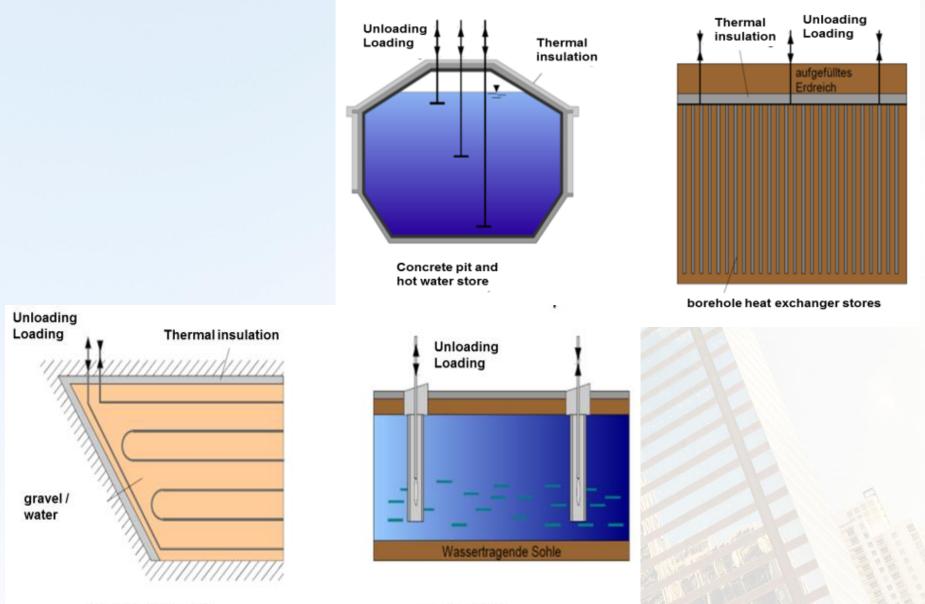
ultimate limit state (ULS) / serviceability limit state (SLS)

Measured Energy Pile System Performance

The foundation piles contribute by being used as energy piles: about 300 piles have been equipped with 5 U-pipe fixed on the metallic reinforcement to use them as a heat exchanger with the ground.

- Measurements of the energy pile system begun in October 2004 for a 2 years period.
- Peak power loads are met with district heating used in complement to the heat pump.
- 85% of the annual heating demand, which was established to 2,720 MWh/y, should be covered by the heat pump.

Large Scale RES Use Needs Energy Storage

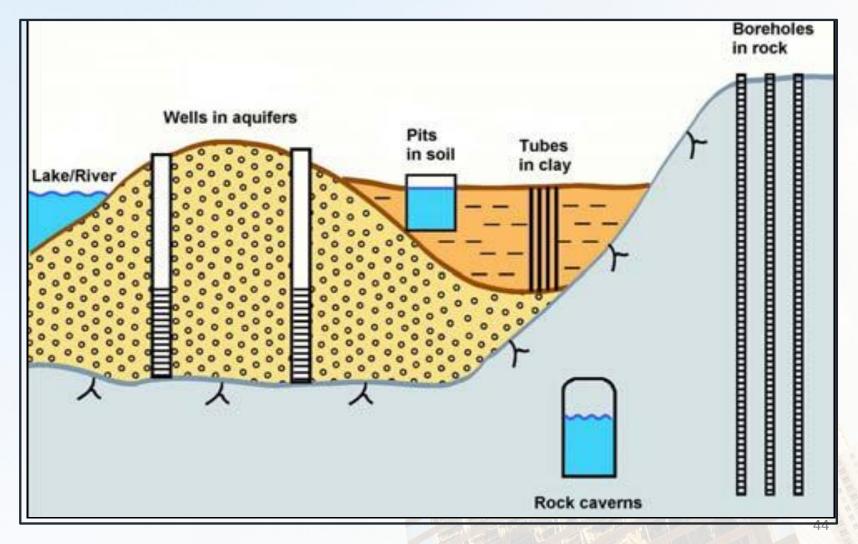

- The main problem of the RES (renewable energy sources) use is their intermittency, variable intensity and quality - features which are not matching the way the traditional electricity grid operates.
- To keep balance between the supply and demand crucial for stable distribution system, the only real option is to store the energy when it's produced, and send it to the grid when it's needed.
- Hence, it is necessary to find innovative ways of large-scale storage systems and large storage volumes to solve problem of interruptible availability and variable intensity quality of most types of RES.
- ■Worldwide, many abandoned mines (of coal or minerals) offer large storage volumes almost ready-made to be used directly for energy storage. Related technologies and a few case studies are reviewed.

NREL Report/TP-6A2-47187 January 2010

The Role of Energy Storage with RES Electricity Generation

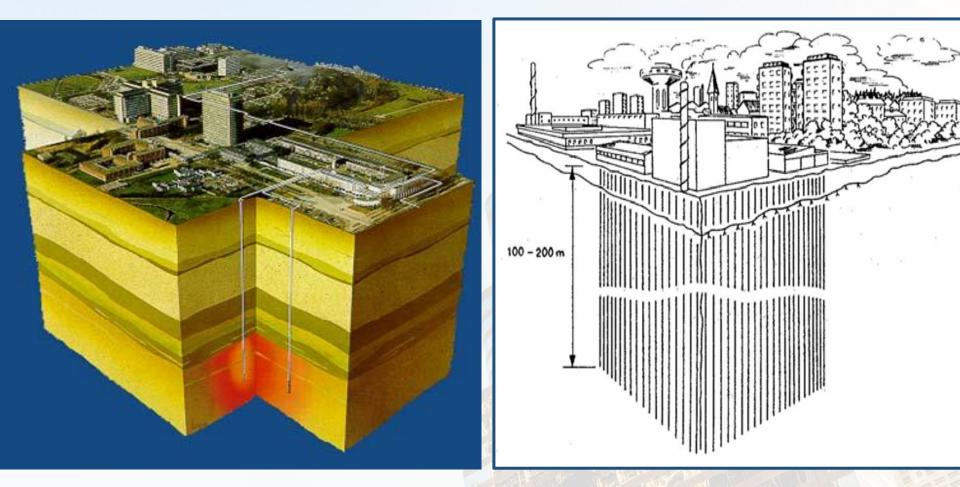
- Because their intermittency and variability there is need for the deployment of energy storage as an essential component of energy systems that should use at large scale RES.
- An approach is to be found that can confirm maintenance of the required system reliability, necessary technologies and changes in operational routines, as well as the cost-competitiveness, benefits of the potential technologies enabling energy storage in the electricity grid addressing especially effects of large-scale deployment of wind and solar energy:
- High-energy batteries
- Pumped Hydro Storage (PHS)
- Compressed Air Energy Storage (CAES) and
- Thermal Energy Storage.

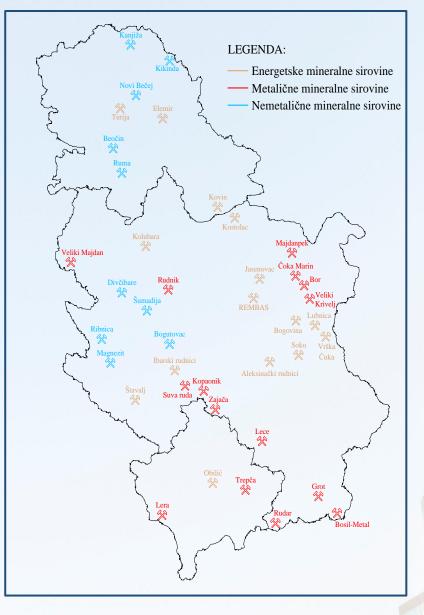
Underground TES Concepts



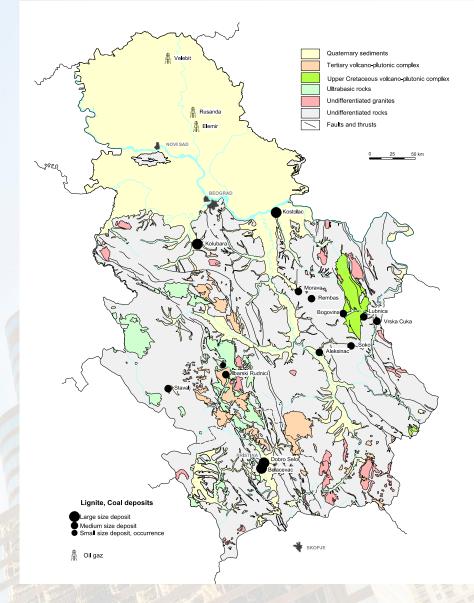
gravel / water stores

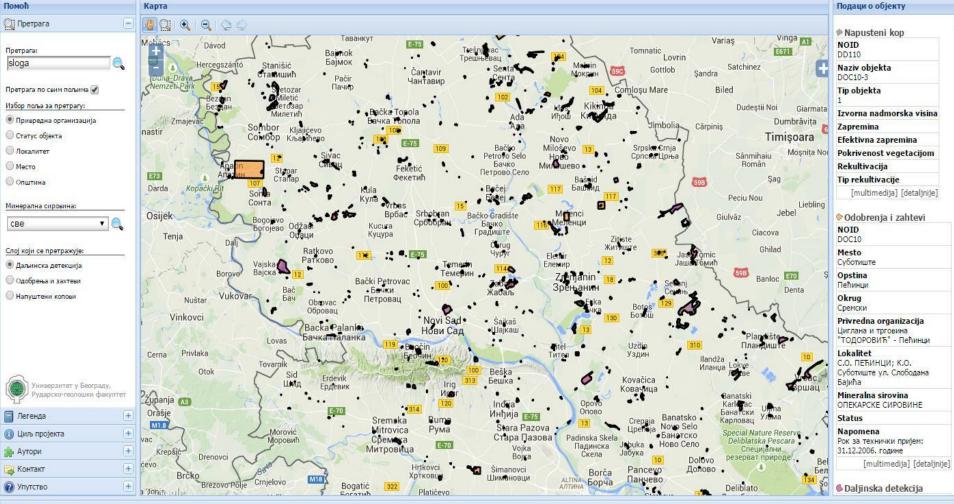
Aquifer stores


Underground Thermal Energy Storage (UTES)


The UTES includes ATES, BTES and CTES i.e. Thermal energy storage in Aquifers, Boreholes, and Caverns.

ATES and BTES Exampples


Aquifer TES in Utrecht, Netherlands (left) and Large scale Borehole TES system on the top of the storage can be used as parking lots, parks, and even for constructions (right)


Mines in Repubic of Serbia

Energy-mineral Deposits in Serbia

WebGIS app. of the Cadastre of abandoned mines of APV

Can have one of the following Google Maps: Physical, Streets, Hybrid or Satellite, depending on user choice: polygons singled with remote sensing and polygons resulting from the analysis of exploitation authorizations, requests for re-cultivation and field visits.

Desvera enernare

Closing Mines and Ecological Rehabilitation Needs

Romanian Turda &

Closing mines in Romania (mining dating back 100 years B.C.) is focusing mainly exhausted mines of ores.

On Romanian law & special program more than 450 mines was planned to be closed in Romania over 10 years, with a financial provision of approximately US \$400 million.

di

Poland's Wieliczka Salt mines Wieliczka

> The earliest copper mining (Vinča Culture, 5,000 BC)

Senjski Mine ECO Museum & Industrial Heritage

Old Cole Mines Can Be Part of Green Energy Future

- Trying to find a way to make a turn from the current one-way irreversibility to sustainability, in addition to the uninterrupted R&D aimed to advance RES (Renewable Energy Sources) technologies it is necessary to find innovative ways of:
- universal schemes, quantities, indicators and criteria relevant for the sustainable Earth resources utilization
- environment protection and already damaged environment recovery and rehabilitation.
- large-scale storage systems and large storage volumes to solve problem of interruptible availability and variable intensity quality of most types of the RES.
- Worldwide, many abandoned mines (of coal or minerals) offer large storage volumes almost ready-made to be used directly for energy storage. Related technologies and a few case studies are reviewed.

THANK YOU For Your Kind Attention

Questions? Marija S. Todorovic

todorovic.s.marija@gmail.com

There is One Way to Reach Sustainable Development – It is a Way via Harmony & Ethics of Sustainability

Or to war for energy sources, water and raw materials and End with the apocalypse

